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PROBLEM AND MOTIVATION
• Direct RGB-D registration limitation: models are valid for small

motions.
• Main objective: the design of

a robust/efficient direct RGB-
D registration technique for
large motions.

• Multiple applications:
• Visual odometry, mapping

and SLAM;
• Navigation and visual ser-

voing;
• Augmented reality.

CONVERGENCE DOMAIN
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Geo:
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• 1) Geom. cost is flatter than RGB in the neighbourhood of the
solution;

• 2) Do not guarantee sub-pixel precision from intensity only cost
term.
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BACKGROUND & RELATED WORKS

Classic RGB-D formulation:
Find pose T(x) ∈ SE(3) that
minimizes

C(x) = CI(x) + µ2CD(x)

• CI(x) = ρ(I(w(p,T(x)))− I∗(p)):
SSD of pixel intensities
(photometric term);
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• CD(x) = ρ((Rn∗(p))T (g(w(p,T(x)))−T(x)g∗(p))): direct point-
to-plane error (geometric term);
Denoting: n∗: normal vector; g(•): 3D point; w(•): warping; ρ(•): Tukey’s robust function.

• Scaling factor µ:
• Heuristically set;
• µ based on covariance of each point [C. Kerl & D. Cremers,

ICRA’13];
• µ scaling pixels to meters [T. Tykkala et al, ICCV’11].
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• How to identify the neighbourhood where the RGB cost term is
more discriminant?

REGISTRATION RESULTS
Experimental set-up Sponza Atrium Sequence:

• Spherical sensor model;

• Test with gaps of 15 frames (≈ 1.2 meters between frames).

Experimental set-up KITTI VO/SLAM Sequence 00:

• Multi-resolution: pyramid of four levels;
• Tests with sub-sampling (gaps) of 1,2 or 3 frames.

KITTI outdoor sequence: average RRE[deg]/RTE[mm]
Gap = 1 Gap = 2 Gap = 3

[Tykkala, ICCV’11] 0.08/23.1 0.78/268 3.68/1059
Adaptive 0.06/16.4 0.37/47.5 1.05/238

CONCLUSIONS & PERSPECTIVES

• Adaptive formulation that explores convexity and convergence
properties of intensity and geometric data terms;

• Exploit more geometric term when further of the minimum; End
up with classic RGB term near the solution;

• 20 times faster in simulated sequences and at least as three times
fast in real sequences (fixed resolution);

Next Step: add planes, edgelets/lines and image moments.

METHOD: ADAPTIVE FORMULATION
• Approach: to explore the relative variation of the RGB (CI ) and

geometric (CD) costs – conditioning:

µ(x) =

{
k1 + k2, if condx(CI(x))/condx(CD(x)) < k3
k1, otherwise.

• With the relative conditioning of a function as:

condx(C(x)) =

∣∣∣∣C(x0 ◦ x)− C(x0)

C(x0)

∣∣∣∣ / ||x||||x0||
• Easy tuning (just choose k3 >> 1) and high detectability.
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